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Symplectic Twistor Spaces
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Abstract. The paper describes the geometry of the bundle T (M, w) of the compa-
tible complex structures of the tangent spaces of an (almost) symplectic manifold
(M, w), from the viewpoint of general twistor spaces (3], [9), (1} It is shown that
M has an either complex or almost Kaehler twistor space iff it has a flat symplectic
connection. Applications of the twistor space I to the study of the differential
forms of M, and to the study of mappings ¢ : N > M, where N is a Kaehler manifold
are indicated.

INTRODUCTION

In the last few years general twistor spaces have been studied by several authors in
connection with gauge fields theory and with the theory of harmonic mappings [3],
91, [1], [10], etc. The aim of the present paper is to apply this theory to symplectic
geometry. We shall prove that the only symplectic manifolds which have an either
integrable or almost Kaehler space of symplectic twistors are the locally flat sym-
plectic manifolds. (See the exact formulation of the results in Theorem 2.1,2.2, of
this paper). We shall use the space of twistors in the description of differential forms,
and in the study of mappings from a Kaehler manifold to a symplectic manifold.

1. DESCRIPTION OF SYMPLECTIC TWISTOR SPACES

Let (M?" w) be an almost symplectic manifold (1) with the fundamental
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2-form w. A symplectic twistor on M is an almost complex tensor J at x € M
such that

(1.1) WX, JY)=w(X, V), wX,JX)>0 if X+#0.
Then J has an associated almost hermitian metric

(1.2) g (X, Y) = w(X,JY).

The fibre bundle (e.g., [9])

(1.3) 7. I9=9M,w)~»M

of all the symplectic twistors along M is called the symplectic twistor space of M.

We shall denote by ¥ the vertical foliation of & by its fibers. The transverse
bundle T /¥  is isomorphic to £ = #~1(TM) and it plays a fundamental role
for 9 [9]. Particularly E has the tautological complex structures

(1.4) € v=—Jv, €,w=Jv (WVEE, JET).
Furthermore, like in [9], we get
(1.5) ¥V, ={X€End E/ZJ+J% =0and w(Xv,w) + w(v, Tw) =0},
and we see that ¥ has also a complex structure ® given by
(1.6) o, T=2J (Xe v).

In order to combine (1.4) and (1.6) into almost complex structures of J we
need a splitting of the exact sequence

(1.7) 0> ¥ ->TY9->E-Q,

and this is defined in twistor spaces theory [3], [9] by the horizontal distribution
H defined on 9 by a connection V on M. That is, forJ € 7, Ji’} is the plane
of the tangent vectors to the paths obtained by V-paralle! translations of J. In
order that ¥ C T J, we must take V to be an almost symplectic connection, i.e.,

(1.8) Vw=0.
Now every & € T has a unique decomposition which we shall denote as
(1.9) T=a"+° (Xrew Tvey),
and .# becomes endowed with the almost complex structures
(1.10) fl=‘€1+<1>, SF=€,+ o

Moreover, £ has a common hermitian metric associated with both ‘61 and

€,
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(11D Ve, V) =w(€,u,v) = w(u, €,v),

which may be transfered to . This metric also induces a metric of End E, and
therefore of ¥  given by

1
(1.12) Tena e 2,¥) = —tr SR &7.)

where the righthand side contains the matrices of the respective elements with
respect to arbitrary local bases of E. The direct sum of (1.11) and (1.12) yields
an almost hermitian metric on 4 for the almost complex structures (1.10).
We shall denote it by J, and we shall denote the corresponding Kaehler forms by

(1.13) E(L,Y)=4(F,4,%) (@=1,2.

The restrictions of Z° to horizontal vectors are exactly 7 *w.
The structures introduced above have also a nice local description. Namely,

let (e;, ei*) (i=1,...,n;i*=i+n) be a local field of symplectic bases of TM,
i.e.,
(1.14) w(e;, el.) = w(ea, e].*) = Q, wl(e, el.*) = 8i]..

letJ € 7, and let

1 1
(1.15) J+=E(Id.—\/—1J), J‘=—2—(Id.+V—lJ)

be the associated projectors onto the + V=1 -eigenspaces of J. Then it is well
known that J is defined by im J* which is a positive Lagrangian subspace of
(T""(J)M, w) [2]. Positivity implies that im J* is transversal to span{ei}, and
then there is a unique symplectic transformation o which preserves every e,,
and sends span {e,,} onto im J *. o can be expressed by [2]

(1.16) oe)=e, ole,) =eZ+e,!

where e = (¢;), e, = (e;) are one-line matrices, and Z = X + V-1Yisa sym-
metric (1, n)-matrix with Y > 0, i.e., en element of the Siegel half-plane [12].

Hence the fibre of 7 is the Siegel half-plane (it is the hermitian symmetric
space Sp(n)/U(n)), and Z is a matrix complex coordinate along the fibers. By
applying J to o(e,) and o(e,), we can compute J(e), J(e,), which yields the
following representation of J € F

Xy ! —y—xy1lx

1.17 J =
S y~! e . ¢
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Using this formula, and taking dJ for & of (1.6), we see that the complex struc-
ture & is the same as the complex structure defined by the complex coordinate Z.

Furthermore, if((ei), (e"*)) is the dual cobasis of (e, e,) written as one-column
vectors, it follows from (1.16) that

(1.18) E=€— Ze*, E=€—Ze*

define the bases of complex type (1,0) for the dual bundle E* with respect
to €, ‘62, respectively. Correspondingly

(1.19) f=eZ+e, f=eZ+e,

are bases of im ‘61*, im ‘62*, respectively. We can also see (1.18) as a basis of
either im €7

;. im® [ or im¥;, im ‘61". With this interpretation, if 4 € ¥,
and Z = J'(0) for a certain vertical path J(¢), the latter is given by

JOF() = V=1F@), J@) () =—V—11(),
and we get by a derivation
(1.20) () =T'(O)F) = V—1£'(0)=JI(f'(©0)), Z(f)= Z(]).

Here f_'(O) is computable by (1.19), and wesee that 2 € ¥, can be represented
by

(1.21) A(f)=—fY1dZ, x(f)=—-fY 4z
Now, in order to obtain the metrics on E and ¥, we shall notice that (1.18)
implies
vV—1 v—1
(1.22) 1r*w=———2— ’£AY‘1£=—2 EAYTLE

Hence the metric (1.11) is the hermitian form
(1.23) re="EeY lE="% oy 1f

Furthermore, by computing (1.12) with respect to the basis (1.19) and by using
(1.21), we get that & induces on ¥ the metric

(1.24) g, =tr{Y 1dZ e Y 1dZ|,

which is precisely the metric studied by Siegel [12]. It can also be checked via
(1.12) that

(1.25) £, (2,9)= Y {w(Zen, He) — w(Te, Feh,

i=1
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where 4, % € v, .
Finally, let us consider the connection V, and write down its local equations
in the matrix form

0 «
(1.26) (Ve Ve,) = (e e*)(k “)

where the (2, 2)-matrix-of connection forms takes values in the symplectic Lie
algebra sp(n),i.e.,

(1.27) k=K, A=\, W +u=0.

Then the parallel translation of J is equivalent to the paralle!l translation of the
distribution span (o(e,)) of (1.16), and of its conjugated distribution, and,
by (1.26) the equations of these translations, i.e., the equations of 3 will be

(1.28) ¢=0, §=0,
where
(1.29) $=dZ+0Z+ 2'0 +k —Z\Z.

It follows that (e, €*;¢, f) is a local cobasis of 9 adapted to the splitting (1.9),
and since pullback ¢ to ¥ = dZ, we see that (§, ) is a cobasis of the forms of
the complex type (1,0) of Jl, and (E, $) is a similar basis of .fz, defined by
(1.10). It also follows from (1.23), (1.24) that the corresponding almost hermi-
tian metric ¥ on 7 is

(1.30) G='% @Y 1E+tr{Y 1t oY 1T},
and the associated Kaehler forms (1.13) are, respectively,

(131 Ell=g*w s

{tr Y"IEAYTIE)
2
Another important piece of structure of a twistor space is the induced con-
nection V' = 71V of E. Using it, and following [9], we define on E the con-
nection

1
(1.32) Dzu=Vq'ru+—.Q""Ju (XeTT,uckE).
’ 2

Using (1.19), (1.21) and (1.26), we obtain for D the local equations

_ Vv—1
Y-t ,Df=f()\z+#——2— Y~ tg,

(1.33) Df=fAZ+u+
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which proves that D preserves the complex structures ‘61, (62 of E. A conse-
guence of this fact is

(1.34) Vo6 =—2", Vy6,=2"

Now, on one hand, D may be transposed to the horizontal bundle J#. On
the other hand, D induces a connection on End E which commutes with J,
hence D induces a connection on ¥~ which commutes with the complex structure
& of ¥'. By adding up these facts, we see that D extends to an almost complex
connection on Z with respect to both structures £ Fy of (1.10). Moreover,
it is easy to see that Vw = 0 implies that D(m*w) = 0, and D also preserves
the almost hermitian metric ¢ of 7 .

Generally, D has a torsion T2 Its computation is a technical matter (see [9]),

and it gives

, 1 1
(1.35) [T2(Z, %)) = horizontal lift {TV(X, Y) + 3 XvJy — > Y IX],
(1.36) [TP( &, %))°Z = horizontal lift {RY(X, Y)JZ) —JRV(X, Y)Z},

7,

where TV, RV are the torsion and curvature of V respectively, &, % € I.
ZGEJ, X=n,%, Y=m,%. (In this computation one uses extensions of .,
%, Z to fields with horizontal parts projectable to M, and one uses the commuta-
tion of D with horizontal and vertical projections, and the interpretation Z “=
= Vg' J of the vertical component of Z which is given by (1.34).

2. INTEGRABILITY AND THE KAEHLER CONDITION

It is obvious that the integrability of the almost complex structures (1.10)
is an important problem. Here, we apply the general results of [9] in order to
discuss the symplectic case. The Nijenhuis tensor of these structures [7] can be
written as [9]

2.1) NP X Y)=—8Re FITP( 5,4, £;%) (a=1,2),

and the structure £ is integrable iff N ¢= 0. Since the structure is real this
means

(2.2) IITP( S, X, F;H) = 0.

For a = 2, if we evaluate the horizontal part of (2.2) for Z € J#, % € ¥ by
using (1.35), we get necessarily % = 0. But for dim M > 0 nonzero vertical
vectors exist. Hence jz is never integrable. For @ = 1, (2.2) has a horizontal
and a vertical component, and we get the integrability conditions [3], [9]
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(2.3) JYTVJ~X,J"Y) =0,
2.4) J*RYJX,J " J"2Z)=0,

for every JE€ J and X, Y, ZET, ( 5yM. These conditions can be analyzed by
group representation considerations, which give TV and RV [9].
In the symplectic case, we get

2.1. THEOREM. Let (M2" w) be an almost symplectic manifold. Then M has
a connection V which induces an integrable structure Jl on I (M, w) iff either
n=1orn>1 and M is locally conformally symplectic flat. Particularly, if M
is symplectic the last condition means that M is symplectic flat.

Proof. In [9], it is shown that (2.3) holds iff
(2.5) TVX,Y)=a(X)Y —a(NX

for some 1-form a. Accordingly, using Vw = 0 we obtain

(2.6) dw(X, Y, 2)= Z w(TYX, V), Z) = 2(a A w)(X, Y, 2).

Cycl.
Conversely, if (2.6) holds, the connection
2.7 VY=V, Y +PX, 1),
where % is an arbitrary linear connection, and P is the tensor defined by

1. 1, 1 .
28) WP, 1), D = = ()Y, 2) + — (Vo)X D) + = (XX, D,

satisfies (1.8) and it has the torsion (2.5). (See, for instance, [18]). Hence (2.5)
can be achieved iff (2.6) holds good. Forn = 1, this holds with « = 0. Forn = 2,
a 1-form o satisfying (2.6) always exists [8]. Forn > 2, if (2.6) holds for some «
then, necessarily, da=0 and 20 = do for some local functions ¢. Then
d(e7°w) =10, and we see that M is a locally conformal symplectic manifold
(e.g., [17]).

Furthermore, if (2.5) holds, the first Bianchi identity for linear connections
with torsion becomes

(2.9) Y RYX,NZ=) [daX, VZ.

Cycl. Cycl.

If da =0, we may go on with the result of [9]. In order to include the case
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n =2, das# 0, we take
2.10) p(X, NZ=R'X,NZ—-da(X, Z

which satisfies the torsionless Bianchi identity, and RV satisfies (2.4) iff p satisfies
(2.4). Then p must have the form given for RY in [9], and we get

(211) R'X,NZ=puX,NZ-p(Y.NDZ+pX, DY -u(Y,2D)X +da(X,NZ,

for some tensor .
Now, take the covariant curvature tensor

(2.12) SYWU,Z,X, N=w®R'X,NZ U

which is symmetric in U, Z (e.g., [18]). If we use local natural components, and
(2.11), the symmetry of S means

(2.13) . 2va6w7>\=ua}\wm—umwa7+ymwak—uwwm,
where
(2.14) v(X,Y)=uX, Y)—u(Y, X) + da(X, Y).

Furthermore, define w*” by w_, w” =8, and contract (2.13) by w™?. This gives

(2.15) 2nvaﬂ=pﬁa—uaﬁ.

If this result is inserted in (2.13), and then we contract by w*?, we get
— 2 __ — — (yF

(2.16) NKW, ;= M, + u,,(2n 2n—1) (k=w 7“137)'

Since w is skew-symmetric, (2.16) yields

VRY)) 2n(n — 1)(ua>\+um)= 0.

Let us assume n> 1. Then u is skew-symmetric, (2.16) contracted by w*r
yields k = 0, and using again (2.16) we get u = 0. Now, (2.15) and (2.14) imply
v=_0and da=0.

Hence, for n> 1, (2.11) holds iff (M, w) is a locally conformal symplectic
manifold, and RY = 0. (If da = 0, then RV = 0 implies u = 0 by the same compu-
tation as above). Let us assume that these conditions hold good, and that we
have (2.6) with 2a = do locally. Then a straightforward computation shows
that the connection

(2.18) Ve Y=V, Y —a(X)Y

is torsionless, it has the same curvature as V,i.e., R=R=0,and Vx(e"’w) =0.
This is precisely the meaning of the fact that (M, w) is locally conformally sym-
plectic flat. ‘
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Conversely, if (M, w) is locally conformally symplectic flat as above, we
have an open covering M = U U, with the local functions o, : U:—:R such that
2a=dos, and with local torsionless flat linear connections V°® such that
6’(8_0’(‘3):0. Then, over U,N Us, we have o, — o, = const.,, hence, also,

V¢ (e a“'w) = 0. This implies some relation
(2.19) VEY=V5Y +4%(X, V),

where w(A4¥ (X, Y), Z) is completely symmetric (e.g., [18]). On the other hand,
we get

(2.20) V5w =2a)w=Viw,

and, using (2.19), this implies A% = 0. Therefore, the local connections Vs
glue up to a global connection V on M. Then, the connection V associated to
% by (2.18) satisfies Vw = 0, and it has torsion (2.5) and vanishing curvature,
and provides an integrable structure .#, on T M, w).

Now, in the case n = 1, dw = 0, and M has torsionless symplectic connections.
Following [9], if (2.5) is satisfied for some V, this V may be changed to a torsion-
less symplectic connection without changing the complex structure .ﬁl. If this
is done, the tensor (2.12) has the expression [18]

(2.2 SYU,Z, X, Y)=p"(U, D)w(X, 1),

where pV is the Ricci curvature of V. Let us take in (2.11) w= —p"V. Then,
in covariant form, (2.11) is equivalent to

(2.22) YU, Z)w (X, Y) = p"(Y, Z) w(X, U) — p¥(X, Z)w(Y, 1),

and this condition is always satisfied as it can be easily checked on a symplectic
basis €5, € x-
This completes the proof of Theorem 2.1. The last assertion of the theorem

is clear from this proof. L]
Another interesting result for symplectic twistor spaces is

2.2. THEOREM. Let (M, w) be an almost symplectic manifold. Then (9 (M),
F %) (a=1,2) are simultaneously almost Kaehler manifolds, and this situa-
tion occurs iff M is symplectic, and it has a connection V with vanishing curva-
ture and such that Vw = 0.

Proof. The Kaehler condition considered is d=% = Q for Z¢ defined by (1.31),
and if we express it on the various possible horizontal and vertical arguments
we see that d=¢ = 0 iff
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(2.23) dw=0, df2 =0,

where £2 is the second term of (1.31), and it defines the Kaehler form of ¥ .
This proves our first assertion, and the fact that M must be a symplectic mani-
fold.

Furthermore, we have

(2.24) AQXT Y, %) = Z QTP X, W), XY (X, ¥, XeTT).

Cycl.
and, in view of the definition of €2 and of (1.36), d§2 = 0 iff
(2.25) QUUT(Z, ¥, 2% =0

for every & , % € # and ZV€ ¥ . Since £ is nondegenerate along ¥, (2.25)
is equivalent to [TP(Z, %))’ = 0,1i.e., by (1.36), to

(2.26) RYX,Y)oJ=JoRY(X, Y)

for every J€ J; X, Y € TM. Finally, by means of the tensor S of (2.12), our
condition becomes

(2.27) SWWJZ, X, Y)+SUUZ,X,Y)=0.

Now, since for every symplectic tangent basis (ei, ei,,) there exists J € Z such
that Je, = e, and since S is symmetric with respect to the first two arguments,
we see that (2.27) implies

(2'28) S(ei, e]‘*y X’ Y) = 07 S(e'a el's X’ Y) = S(ei*’ ej*) X’ ),)'

1
The same relations hold with respect to a new symplectic basis (¢;, te; + e'.,)
with ¢+ 0. This implies S = 0 necessarily, which ends the proof of Theorem
2.2. ]

Notice that we do not ask V to have zero torsion.
Let us also notice the following consequence of Theorems 1.1 and 1.2

2.3. COROLLARY. If the symplectic twistor bundle J (M, w) of a symplectic
manifold (M, w) has no complex structure or no symplectic structure then
(M, w) has no flat symplectic connection.

Another result which we should like to mention here is

2.4. PROPOSITION. Let (M, w) be an almost symplectic manifold. Then different
symplectic connections yield different almost complex structures on T M, w).
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Proof. Following [3] the condition for two connections related by
(2.29) V, Y=V, Y +K(X, 1)

to define the same structure £, is

(2.30) J*KJX,J"Y)=0.

For (2.30), if we apply the group representation analysis of [9] we obtain (see
also [3])

(2.3D) KX, V)=a(X)Y +B8(NX
for some 1-forms «, 8. Furthermore, since Vw =§w =0 we must have [18]
(2.32) w(KX, Y),2)=w(K(X, 2),7).

For K of (2.31), and after some contractions, (2.32) implies a=8=20, i.e.,
K=0.
In a similar way the condition to have the same structure % 518

(2.33) J*KUJ X, J"Y)=0
which is equivalent to
(2.34) BUX,JY,Z)+B(UX,Y,JZ)-B(X,JY,JZ)+B(X,Y,Z2)=0,

where B(X, Y, Z) = w(K(X, Y), Z), and it satisfies (2.32). Now, we shall consider
the family of symplectic bases (ei, €x = te; + el.,,) (¢t #0) and Jei = € (1), and
we shall explicitate (2.34) for this J, and for X = €, Y= € Z= €., then for
X= Jei, Y =Je]., Z= Jek. As a result we see that we must have

B(ei; e]-, ek) = B(ei* ’ el" ek) = B(ei, ei* s ekt) =

= B(ei*, ej* s ek*) = 0,
(2.35)
B(ei*, ej*: ek) + B(ei*, e]-: ek*) =0,
B(e,, € €.+) + Ble,, €jxs e) =0.

Furthermore, if we take the more ample family of symplectic bases (e;, 0)\:.‘,, e, +
+ € )(?\:.‘* =\ ,, 8 #0), we get similarly from (2.34), modulo (2.35), that

w*o

}\})*B(e. €, €x) + NuBle;n, € e)=0,

l*’ U’
2.36
( ) )\:.‘*)\]'.’*B(eu, €, €s) + 7\;‘* Ajc*B(eu, €xs e)=0.

Here, in the first relation we take j = k, and in the second i =7 = k. Then, since
one line of the symmetric matrix A can be taken arbitrarily, we shall obtain

(2.37) Ble, e, €.) =B(en. e, €) =0,
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which ends the proof of Proposition 2.4.
We shall end this section by a closer look at the case n = 1. Then M is a surface,
w is a volume element, and

(2.38) 6/; ={J€End 7;M|12 = — I, w-orientation = J-orientation}

xeM), ie., T(M, w) =9(M°") depends only of the orientation of M. The
fibre ?/‘; is the upper half plane of a complex variable z, i.e., a hemisphere of the
unit sphere S2.

From Theorem 1.1, it follows that we can construct a complex structure on
 in the following way. We take a riemannian metric g with volume from w,
and use semigeodesic local coordinates (u, v) such that g is

(2.39) ds? = du?+ G(u, v)dv? (G>0),
and therefore
(2.40) w = VG du A dv.

Then € = du, €* = VG dvisa symplectic cobasis, and ¢ = 3/0u, e, =(1/VG) -
- (8/0v) is the dual symplectic basis. Now we may use the Levi-Civita connection
of M which is torsionless and symplectic, and it has the local equations

(241) Ve, =[(VG),dvle,  Ve,=—[(VG),dv]e,

where the index u denotes 8/du. According to the general formulas (1.18), (1.29),
(M) has a complex structure with the basis of (1, 0)-forms

(2.42) f=du—zVGdv, ¢=dz—(1+z3(VG),dv.
Correspondingly, we have on 7 (M) the hermitian metric ¢ of (1.30) with
the Kaehler form (1.31),1i.e.,

1
(2.43) == VG du Adv— — {dx Ady + (VG), dv A
y

ARxydx + (1 +x2—y2dy]},
where z = x +V— 1 ¥ (¥ > 0). This gives
(2.44) dE!'= — K[2xydx + (1 + x2—p?)dy] AEL,

and we see that we have a Kaehler structure on 9 (M) iff K = 0, and we have
a locally conformal Kaehler structure {14] iff X = const. L]
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3. POTENTIAL APPLICATIONS

The geometric applications of symplectic twistor spaces are still to be disco-
vered and studied. Here, we make only a few introductory remarks about this
subject.

a. A first idea is to use the manifold Z of Section 1 in order to derive properties
of differential forms of the almost symplectic manifold (M, w). It is clear that the
algebra of these forms AM can be seen as a subalgebra of the algebra of cross-sec-
tions AE* which is built over a hermitian vector bundle, and it has therefore
the well-known corresponding algebraic operators and properties [19]. If we
agree to call projectable to those elements of AE* which belong to AM, and if
we discuss the projectability of the algebraic operators mentioned above, we
shall refind the operators and properties of AM as given in [8].
Namely, we have the operator [19]

(3.1) Ca(X,,...,X)=a(€, X, ..., 6,X) (a€NE™.

For k=1, #C (where # : E* ~ E is defined by the metric vg of (1.11) is the
isomorphism E* =~ E defined by w [8]. If % is the Hodge star of Yg Where the
volume element of Eis taken to be (— 1)"w"/n!, then a simple computation
shows that =C preserves projectability, and it is precisely the operator # of [8].
The operators La = w A «, and

3.2) A=x"1Le=%"1L5%

of [19] and [8] preserve projectability. Because of the hermitian structure we have
(e.g., [19]) a unique decomposition

3.3) a= Z L'a,, ac NE*
h=k-n*

where (k —n)* = max (0, kK — n), and oy = <I>k’h(L, A) aeker A, where <I>k,h(L, A)
are polynomials in L, A which do not depend on a. Hence, if a is projectable
so are &, and (3.3) becomes a theorem [8] for AM, which needs no independent
proof.

Furthermore, we may see AE * as isomorphic to AJ#F*, i.e., the algebra of forms
on 9 which are of type (-, 0) with respect to the (3, ¥ )-decomposition (1.9)
of T.7 ; we call this the ¥ -type of a form. It is well-known [13] that one has
a decomposition of the exterior differential on 7 as

(3.4) d=dg o+ don+ 91
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where the indices denote the ¥ -type of the operators. Then we have
(3.5) A = (As#*) N (ker d”),

and d,, =~d'. The codifferential ' = — +d’ * on .7 doesn’t preserve projectabi-
lity, but 8" = C8'C [8] does. As in [19], we have

(3.6) Ld'=d'L, A8 = 8'A,

in the symplectic case (i.e., dw = 0). Since C commutes with A, we also get [8]
3.7 A8 = 'A.

Then, by the proofin [19], we get [8]

(3.8) Ad —d'A=—C18'C=(—1)%8§,

(3.8") L' —8'L=Cc"ldC=(—1Pricdc.

Finally, we may consider the (non-elliptic) Laplacian A' = d'8' + &' d’ which
will commute with *, d, L, such that for « € ker A', a, of (3.3) also belong to
ker A'. A" doesn’t preserve projectability, but A'=—CA' C=d'8' + &' d’ does
[8]. A usual computation shows that d’, §' are formal adjoint operators, and
A is self-adjoint for the scalar product

3.9) (a,ﬁ)=/ alNxBAE
T

(where «, § are compactly supported forms of ¥ -type (+,0) on 7, and Z= is
the volume form along ¥7), if the condition d' = = 0 holds good. Etc.

Another possibility to relate forms on J and on M is by fibre integration
along the fibers of w : 9 — M. It is known [5] that, if M is compact, then

(3.10) [: NN 7> N M

(where /\fN denotes compactly supported forms of ¥ -type (p, N), and N=
=n(n + 1)) is a surjection. Generally, on /\fN we have d = d’ + 9, hence we do
not get a cochain subcomplex of the de Rham complex of , but, using the
¥ -type homogeneous consequences of dZ=0 [13], it is easy to see that such
a subcomplex fN is defined by the subspaces

(3.11) HE={ac NN T [3a = 0}.

Accordingly, and since integration along fibers commutes with d, we deduce
the existence of a homomorphism

(3.12) [ HP(Ay) > HP(M, R).
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If M is a symplectic flat manifold, # is integrable, d =0 and A, = N¥J . It
is also known [5] that

(3.13) Py, 1B) = Z (1%, B),

where a € APM, B e /\Z_p’N T, © is the projection - M, and 2 is the global
scalar product which leads to Poincaré duality. It follows from (3.13) that, at
the cohomology level, if 7* is injective, the f is surjective. In our case this is true
since the bundle 7 has global cross-sections. This yields

3.1. PROPOSITION. Let M be a compact symplectic flat manifold. Then, there
exists a cohomology epimorphism

(3.14) f: HP(NSN Ty > HP(M, R).

Finally, it should also be remarked that, in case 7 has a complex structure,
we might also use the decomposition of forms of M into terms of homogeneous
complex type of 7 . The terms will not be projectable, but the decomposition
may be interesting at least since M itself may have no compiex structure. (See
[4] for examples of symplectic flat manifolds with no complex structure).

b. A second potential application to be considered is to the computation of the
Chern classes of an almost symplectic manifold (see, e.g., [16]). Indeed, we may
use connection D of (1.32) in order to compute the Chern classes of (£, %2), and
then pull back these classes from .9 to M by means of a global crossection J : M —
- 7.

Namely, let V be defined locally by (1.26), and let

® K d0+0NA0+k AN de+0AK+KAN
(3.15) =(

A -0 dA+pAN+AAG dpt+pAp+AAk

be the corresponding curvature forms. Then, connection D has the local complex
equations given by the second part of formula (1.33), and its curvature will be

—1
(3.16) <I>D=AZ—’@——2 Y W(®Z+K+2'0—-247)—

1
—Ia+ " Y ley AL —

vV—1
- @Y 1l—y g+ Y 120 +2ZY 1+ uY " H AL
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Now, the evaluation of the Chemn polynomials on ®° yields representative
forms of the Chern classes requested. For instance, if V is a flat connection,
and (e, e, ) are parallel bases, (3.16) yields

1 _
(3.17) tIP:—Z(Y‘le)/\(Y‘le),
and we see that cl(E) is represented by (1/4w) x (Kaehler form ong of (1.24)).

c. Finally, we shall discuss mappings ¢ : N - M, where N is a Kaehler manifold
with complex structure j and metric «, and M is a symplectic manifold with
symplectic form w, which are analogous to the harmonic mappings of rieman-
nian geometry.

Firstly, a mapping ¢ : N> M will be called .ﬂa-holomorphiable (a=1,2)
if it can be written as p=mo Yy for some holomorphic mapping ¥ :(V, /) >
> (I M, w), £,) where £ is associated by (1.10) to some symplectic torsion-
less connection V on M. The characterization of this property is obtainable as
in [10], [11]. Namely, we must have

(3.18) Veol= F, oV, Yy =d¥).

This relation has a horizontal component, which we obtain by applying the
differential 7, and by using (1.15) for both J and j. The result is

(3.19) Jro,(jTu)=0 (= y(pryu)),

where + is fora = 1, and —is for a = 2. The expression of the vertical component
of (3.18) follows by using the relation

(3.20) W) =1'V),J WeTN),

which is provided to us by (1.34), and where ¢~V is the pullback of V to the
vector bundle cp_l(TM) = Yy~ 1(E). The two sides of (3.20) are endomorphisms
of this latter bundle. Using again (1.15), and taking « to be successively of the
complex type (1,0) and (0, 1), the vertical component of (3.18) mentioned
above becomes (after a complex conjugation)

(3.21) J‘[(so_IV)],_u(J+ Nl=0,

where J = Y (pr,, u), and Y is a cross-section of o~ N TM).

Furthermore, we may see @, as a cross-section of T*N & ¢~ {(TM) with the
local components ¢;‘= axMarP, where ¢ has the local equations x*= xMN+P),
and g, has a covariant derivative Vg, ¢fV®g (¢~ 'V)y,, where V*is the Levi-
-Civita connection of the Kaehler metric & of N. Then we may define the pseudo-
tension field [15]
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(3.22) tNp) = aﬂqﬁpwg.

(Notice that we have [15]}

IV
T oA — 9 _ s A A o
(3.23) prq =37 qu‘Px +I“w¢> sp;,

where T, L. are the connection coefficients of V, V respectively, and the
symmetry of I'.. implies ﬁpw;‘ = Vq tp;‘). The mapping ¢ is said to be pseudohar-
monic if t(p) = 0. The interest of this notion (if any) relies on the fact that
t(p) = 0 is an elliptic system of equations. Hopefully, a good understanding of
such pseudoharmonic mappings could yield progress in symplectic geometry, in
the way Gromov’s pseudoholomorphic curves [6] did. Particularly, if M is a 2-di-
mensional manifold with w defined by (2.39), (2.40), and if V is the Levi-Civita
connection of the metric (2.39), then pseudoharmonic means in fact harmonic.

Now, the relations between the twistor spaces and pseudoharmonic mappings
is exactly the same as in riemannian geometry, namely [10], [11]:

3.2. PROPOSITION. Let ¢ : N> M be a mapping from the Kaehler manifold
(N, j, @) to the symplectic manifold (M, w) endowed with the torsionless symplec-
tic connection N. Then, if either i) ¢ is #,-holomorphiable or, ii) ¢ is horizon-
tally ¢ l-holomorphiable Gle, p=moy where y :N—> T is fl-holomorphic
and with (im ¥ ,)° = 0), v is a pseudoharmonic mapping.

The proof is like for Theorems 5.6 and 5.7 of [10]: one uses complex analytic
coordinates 6%, Y on N (instead of 7P), which, by (3.23) yields

0 A a1\
(3.24) ~-¢A=[(¢—IV) (w ( ))] —[w {V“ )] =
#Tv 5% * oc?! *\ % ao’
a A
=[(¢—1V)_a_ w*(a u)]
oot o
we used that V<, 357 0 in Kaehler geometry) ; then
o 00
(3.25) tM(p) = 20"V 0} =T (),
and the manipulation of (3.19) and (3.21) leads from the hypotheses to the
conclusion. L]

Remark. In fact, Proposition 3.2 holds for any evendimensional manifold M
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endowed with a torsionless connection V.

REFERENCES

(1]

(2]
(3]

[4]
(5]
(6]

[11]

(12]
[13]
[14]

[15]

[16]

(17}

(18]
(19]

L. BERARD-BERGERY, T. OCHIAL: On some generalizations of the construction of
twistor spaces, In «Global Riemannian Geometry» (T.J. Willmore and N.J. Hitchin,
eds.), Ellis Horwood Ltd. Chichester, 1984, p. 52 - 59.

R. DEHEUVELS: Formes quadratiques et groupes classiques, Presses Univ. France, Paris,
1981. ’

M. DUBOIS-VIOLETTE: Structures complexes au-dessus des variétés, applications, In
«Mathématique et physique. Sém. Ecole Norm. Sup. 1979 - 1982» (de Movel, Douady,
Verdier, eds.), Progress in Math. 37, Birkhiuser Boston, 1983, p. 1 - 42.

M. FERNANDEZ, M.J. GOTAY, A. GRAY: Compact parallelizable four dimensional sym-
plectic and complex manifolds and a conjecture of Thurston, Preprint 1986.

W. GREUB, S. HALPERIN, R. VANSTONE: Connections, Curvature and Cohomology,
Vol. I, Academic Press, New York, 1972.

M. GROMOV: Pseudo holomorphic curves in symplectic manifolds, Inventiones Math.,
82 (1985),307 - 347.

S. KOBAYASHI, K. NOMIZU: Foundations of Differential Geometry, I, II, Intersc. Publ.,
New York, 1963, 1969.

P. LIBERMANN: Sur le probléeme d’'équivalence de certaines structures infinitésimales,
Annali Mat. Pura Appl. 36 (1954), 27 - 120.

N.R. O’BRIAN, J.H. RAWNSLEY: Twistor spaces, Annals of Global Analysis and Geome-
try 3 (1985), 29 - 58.

J.H. RAWNSLEY: f-structures, f-twistor spaces and harmonic maps, In: «Geometry Se-
minar Luigi Bianchi II - 1984» (E. Vesentini, ed.), Lect. Notes in Math. 1164, Springer
Verlag, Berlin 1985, p. 86 - 159.

S. SALAMON: Harmonic and holomorphic maps, In: «Geometry Seminar Luigi Bianchi
II - 1984» (E. Vesentini, ed.), Lect. Notes in Math. 1164, Springer Verlag, Berlin 1985,
p. 161 - 224.

C.L. SIEGEL: Symplectic geometry, Academic Press, New York, 1964.

I. VAISMAN: Cohomology and Differential Forms, M. Dekker, Inc. New York, 1973.
1. VAISMAN: On locally conformal almost Kaehler manifolds, Israel J. Math. 24 (1976),
338 -351.

I. VAISMAN: A. Schwarz lemma for complex surfaces, In Global Analysis-Analysis on
Manifolds Dedicated to «Marston Morse» (Th. M. Rassias, ed.), Teubner Verlag, Leipzig,
1983, p. 305 - 323.

I. VAISMAN: Lagrangian foliations and characteristic classes, In: «Differential Geometry»
(L.A. Cordero, ed.) Research Notes in Math. 131, Pitman, Inc., London, 1985, p. 245 -
256.

1. VAISMAN: Locally conformal symplectic manifolds, Internat, J. of Math. and Math.
Sci. 8 (1985), 521 - 536.

I. VAISMAN: Symplectic Curvature Tensors, Monatshefte fir Math. 100 (1985),299 - 327.
A. WEIL: Introduction a l'étude des variétés Kihlériennes, Hermann, Paris, 1958.

Manuscript received: October 27, 1986.



