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Abstract.Thepaperdescribesthegeometryof the bundle~(M, w) ofthecompa-
tible complexstructuresof the tangentspacesof an (almost)symplecticmanifold
(M, u,), from the viewpoint of general twistor spaces[3], [9], [1], Itis shownthat
M hasan either complexor almostKaehlertwistorspace1ff it hasaflat symplectic
connection.Applicationsof the twistor space.9 to thestudyof thedifferential
forms ofM, andto thestudyof mappings~ N -+ M, whereN isaKaehlermanifold
are indicated.

INTRODUCTION

In thelast few yearsgeneraltwistorspaceshavebeenstudiedby severalauthorsin
connectionwith gaugefields theoryandwiththetheoryofharmonicmappings[3],

[9],[1], [10], etc. Theaim of thepresentpaperis to applythistheoryto symplectic

geometry.We shall provethat the only symplecticmanifoldswhich havean either
integrableor almostKaehlerspaceof symplectic twistorsare the locally flat sym-

plectic manifolds.(Seethe exact formulation of the resultsin Theorem2.1,2.2,of
this paper).Weshallusethespaceof twistorsin thedescriptionof differential forms,
and in the study of mappingsfrom a Kaehlermanifold to a symplecticmanifold.

1. DESCRIPTIONOF SYMPLECTIC TWISTOR SPACES

Let (M
2~?,w) be an almost symplectic manifold (1) with the fundamental
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2-form w. A symplectic twistor on M is an almostcomplex tensorJ at x EM

suchthat

(1.1) w(JX,Jfl=w(X,Y), w(X,JX)>0 if X�0.

ThenJhasan associatedalmosthermitianmetric

(1.2) g~(X,Y)=w(X,JY).

The fibre bundle(e.g., [9])

(1.3) ir:

of all the symplectic twistors alongM is calledthesymplectictwistor spaceof M.

We shall denoteby ~Kthe vertical foliation of .9 by its fibers. Thetransverse

bundle T~97Y is isomorphic to E = 7r~(TM)and it plays a fundamentalrole

for .9[9]. ParticularlyE hasthe tautologicalcomplexstructures

(1.4) ~
1v=—Jv, ~12v=Jv (vEE~,JE.fl.

Furthermore,like in [9], we get

(1.5) 1~=~

andweseethat ~Khasalso a complexstructure4) given by

(1.6) 4y~E=~EJ ~

In order to combine(1 .4) and (1 .6) into almostcomplex structuresof 9 we
needa splittingof theexactsequence

(1.7) 0-T5~E-~0,

andthis is definedin twistor spacestheory [3], [9] by the horizontaldistribution

.~° definedon ,9~by a connectionV on M. That is, for JE ~, )~is the plane

of the tangentvectors to the pathsobtainedby V-parallel translationsoff. In
order that ,JV’ C T .9, we must takeV to be an almostsymplecticconnection,i.e.,

(1.8) Vw=0.

Now every .~rE T.9~has a unique decompositionwhich we shall denoteas

(1.9) [=.~[h+.~Tu ~

and 5 becomesendowedwith the almostcomplexstructures

(1.10) ~ 52—~2-i-4).

Moreover, E has a common hermitian metric associatedwith both and
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(1.11) 7E(t~, v) =w(~1u, v) = ~ ~‘2~’

which may be transferedto ~W’.This metric also inducesa metric of EndE, and

thereforeof ~‘ givenby

(1.12) ~E~dE’~~ _tr[7_lt~7~]

where the righthandside contains the matricesof the respectiveelementswith
respectto arbitrary local basesof E. The direct sum of (1 .11) and(1.12) yields

an almost hermitian metric on ,9~for the almost complex structures(1 .10).
We shall denoteit by J, andwe shall denotethe correspondingKaehlerforms by

(1.13) za(~?r,q~I)= ~a~’’~ (a= 1,2).

Therestrictionsof Z” to horizontalvectorsareexactly ir ~.

The structuresintroducedabovehave also a nice local description.Namely,
let (e1,e~~)(i = 1 n; i” = i + n) be a local field of symplecticbasesof TM,

i.e.,

(1.14) w(e1,e1) = w(e~,e1~)= 0, w(e1, e1~) =

Let JE .9, and let

1 1
(1.15) = — (Id.— V’~iJ), J= — (Id. + ~1~iJ)

2 2

be the associatedprojectorsonto the ±VT~i~eigenspacesof J. Thenit is well

known that J is definedby im J~which is a positive Lagrangiansubspaceof
(T~J.)M,w) [2]. Positivity implies that im J~is transversalto span{e~}, and

then there is a unique symplectic transformationa which preservesevery e1,

and sendsspan{e1~} ontoim J~a canbe expressedby [2] -

(1.16) a(e)=e, a(e~)=eZ+e~

where e = (e1), e~= (e1~)are one-linematrices,andZ = X + VCi Y is a sym-
metric (n, n)-matrix with Y> 0, i.e., en elementof the Siegelhalf-plane [12].

Hencethe fibre of ~ is the Siegel half-plane(it is the hermitiansymmetric

spaceSp(n)/U(n)), and Z is a matrix complex coordinatealong the fibers. By
applying J to a(e~)and a(e~), we can computeJ(e), J(e~), which yields the
following representationoff E .~?T

~~-1 ~-1~

(1.17) J= .

Y-
1 —Y-~1X
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Using this formula, andtaking dJ for ~?(of (1 .6), we seethat thecomplexstruc-

ture 4) is the sameasthe complexstructuredefinedby the complexcoordinateZ.
Furthermore,jf((~~),(&*)) is thedual cobasisof(e, e~)written as one-column

vectors,it follows from (1.16) that

(1.18) ~=e_Ze*, ~=e—Ze”

define the basesof complex type (1, 0) for the dual bundle E* with respect
to ‘~‘~~~2’ respectively.Correspondingly

(1.19) f=eZ+e~, f=eZ+e~

are basesof im ‘1~,im ~~‘2~’ respectively.We can also see(1.18) as a basis of
either im ~ im~’j or im ~ im %‘j~.With this interpretation,if .~?(E~’J,

and ~i= J’(O) for a certainverticalpathJ(t), the latteris given by

J(t)(f(t)) = VJ f(t), J(t)(f(t)) = — ~/1~f(t),
andwe get by a derivation

(1.20) ,~(f)=J’(O)(f) = \‘~f’(0)—J(f’(0)), ,~((f)=

Heref’(O) is computableby (1.19),andweseethat .~?(E ‘K,, can be represented

by

(1.21) ~T(f) = —fY~dZ, ~T(f) = —fY~dZ.

Now, in order to obtain the metricsonE and ‘K, we shall notice that (1.18)

implies

(1.22) 7r*w t~Ay-l~ = t~A~

2 2

Hencethe metric (1.11) is thehermitianform

(1.23) ~ ®y_l~,t~®y-l~~

Furthermore,by computing(1.12) with respectto the basis(1 .19) and by using
(1.21),we get that ~ induceson ‘K themetric

(1.24) g.~,.=tr~Y’dZ®Y’dZ},

which is precisely the metric studiedby Siegel [12]. It can also be checkedvia
(1.12) that

(1.25) g(~, ~) = ~ {w( ~ ~e
1) — w(,~e1,~e1~)},
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where~,q~iE‘Kj.
Finally, let us considerthe connection7, and write down its local equations

in the matrix form

(1.26) (VeVe*)=(ee*)(~ )
where the (2,2)-matrix of connectionforms takesvaluesin the symplectic Lie

algebrasp(n), i.e.,

(1.27) tg=g~ t~=~ to+p=O

Then the parallel translation of J is equivalentto the paralleltranslationof the
distribution span(o(e~))of (1.16), and of its conjugateddistribution, and,

by (1.26) the equationsof these translations,i.e., the equationsof ,~‘ will be

(1.28) ~‘=0, ~=0,

where

(1.29) ~‘=dZ+OZ+ZtO+g—ZXZ.

It follows that (e, e *; ~, ~) is a local cobasisof .9 adaptedto the splitting(1.9),
and since pullback ~ to ‘K = dZ, we seethat (~,~‘) is a cobasisof the forms of

the complex type (1, 0) of j~,and (~,~) is a similar basisof f
2, definedby

(1.10). It also follows from (1.23), (1.24) that the correspondingalmosthermi-

tian metric ~ on ,9 is

(1.30) ~ ®Y’~+tr{Y’~’ ®Y
1~},

and the associatedKaehlerforms(1.13) are,respectively,

(1.31) ‘‘l,2.~*~ 2 {tr Y’~A Y’~}.

Another importantpiece of structureof a twistor spaceis the inducedcon-

nection 7’ = ir~V of E. Using it, and following [9], we define on £ the con-

nection

(1.32) ~ (9EET,~T,uEE).
- 2

Using(1.19),(1.21) and(1.26),weobtain forD thelocal equations

(1.33) Df=7~XZ+~.t+ Y’~,Df—fXZ+
1u— y-’~,

2 2
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which proves that D preservesthe complex structures(4~1’ ~2 of E. A conse-
quenceof this fact is

(1.34) V~’~—1~ ~

Now, on one hand,D may be transposedto the horizontal bundle ~‘. On

the other hand, D induces a connectionon EndE which commutes with J,

henceD inducesa connectionon ‘K whichcommuteswith the complexstructure

4) of ‘K. By addingup thesefacts,we seethat D extendsto an almostcomplex
connectionon ~9 with respectto both structures~l’ 3 of (1.10). Moreover,
it is easy to see that V~= 0 implies that D(lr*w) = 0, and D also preserves

thealmosthermitian metric ~ of .9~.
Generally,D hasa torsion TD. Its computationis a technicalmatter(see [9]),

andit gives

(1.35) [TD(~,~J)]h = horizontal lift TV(X, fl + — ~TuJY_ — ~/VJX
2 2

(1.36) [T’~( ~[, ~&‘)]~Z= horizontallift {R~’(X,Y)(JZ) — JR’7(X, Y)Z},

where TV,RV are the torsion and curvatureof V respectively,~, ~&‘E T,, .9T.
Z E E~X = 1r~,~‘, Y = ir,

1,q~f.(In this computationone usesextensionsof .~‘,

~, Z to fields with horizontalpartsprojectabletoM, andoneusesthe commuta-

tion of D with horizontal and verticalprojections,and the interpretation~ 1) =

= V~fof thevertical componentof ~ which is givenby(l.34).

2. INTEGRABILITY AND THE KAEHLER CONDITION

It is obvious that the integrability of the almost complex structures(1 .10)
is an important problem.Here,we apply the generalresults of [9] in order to
discussthe symplectic case.The Nijenhuis tensorof thesestructures[7] can be

written as [9]

(2.1) NJa(.~f,~1)=_8Re5T’~( 5 21, 5~Y) (a= 1,2),

and the structure ~a is integrableiff N a = o~Since the structureis real this
means

(2.2) ~:TD( 5; 21, f;qy) = 0.

For a = 2, if we evaluatethe horizontal part of (2.2) for 21E ~t°, c?Y E ‘Kby
using (1.35), we get necessarily~l = 0. But for dim M> 0 nonzero vertical
vectors exist. Hence is never integrable.For a = 1, (2.2) has a horizontal
and a vertical component,and we get the integrability conditions[3], [9]
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(2.3) J+ T’~(JX, J Y) = 0,

(2.4) J + R’~’(JX, J Y)(JZ) = 0,

for every JE .9 and X, Y, ZE Tr(J)M• Theseconditionscan be analyzedby

group representationconsiderations,which give TV andRV [9].
In the symplecticcase,we get

2.1. THEOREM. Let (M2?z, w) be an almost symplecticmanifold. Then M has

a connection V which induces an integrable structure on ~(M, w) iff either
n = 1 or n> 1 and M is locally conformally symplecticflat. Particularly, if M
is symplecticthe last condition meansthat Mis symplectic flat.

Proof In [9], it is shownthat (2.3)holds iff

(2.5) TV(X, fl=a(X)Y—a(flX

for some1 -form a. Accordingly,using7w = 0 weobtain

(2.6) dw(X, Y, Z) = ~ w(T’~(X, Y), Z) = 2(aA w)(X, Y, Z).
CycL

Conversely,if (2.6) holds, theconnection

(2.7) V
1Y=V1Y+P(X, Y),

whereV is an arbitrarylinearconnection,andP is thetensordefinedby

10

(2.8) w(P(X, Y),Z) = — (V1w)(Y,Z)+ — (V~w)(X,Z) + — (Vzw)(X, Y),

satisfies (1.8) and it hasthe torsion(2.5). (See, for instance,[18]). Hence(2.5)
can be achievediff (2.6) holdsgood.Forn = 1, this holdswith a= 0. Forn = 2,

a 1-form a satisfying(2.6) always exists[8]. Forn> 2, if (2.6) holdsfor somea
then, necessarily, da = 0 and 2a= do for some local functions a. Then
d(e°w) = 0, and we see that M is a locally conformal symplecticmanifold

(e.g., [17]).
Furthermore,if (2.5) holds, the first Bianchi identity for linearconnections

with torsionbecomes

(2.9) ~ RV(X, Y)Z= ~ [da(X, fl]Z.
Cycl. CycI.

If da = 0, we may go on with the result of [9]. In order to include the case
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n = 2,da~r0, wetake

(2.10) p(X, flZ=Rv(X, Y)Z—da(X, Y)Z

which satisfiesthetorsionlessBianchi identity, andRV satisfies(2.4) iff p satisfies

(2.4).Thenp musthavetheform given forRV in [9], andwe get

(2.11) RV(X,Y)Z=p(X,Y)Z_p(Y,X)Z+p(X,Z)Y_p(Y,Z)X+da(X,Y)Z,

for sometensorp.
Now, takethe covariantcurvaturetensor

(2.12) SV(U,Z, X, 1’) = w(R’~’(X, Y) Z, ~

which is symmetricin U, Z (e.g., [18]). If we use localnaturalcomponents,and

(2.11),the symmetryof Smeans

(2.13) - 2Pw~=xw~_xw07+pw0x_I.L~w~x,

where

(2.14) ~(X, fl = p(X, Y)—p(Y,X)+ da(X, Y).

Furthermore,definew~by w0~w~= ~, andcontract(2.13) by w~.Thisgives

(2.15) 2nv~=p~—p~.

If this result is insertedin (2.13),and then we contractby w~,we get

(2.16) n,cw~= + p~(2n
2— 2n — 1) (~c=

Sincew is skew-symmetric,(2.16) yields

(2.17) 2n(n — 1)(p~+ p~)= 0.

Let us assumen) 1. Then p is skew-symmetric,(2.16) contractedby w°>’

yields g = 0, and usingagain(2.16) we get p = 0. Now, (2.15) and(2.14) imply

= 0 andda= 0.
Hence, for n> 1, (2.11) holds iff (M, w) is a locally conformal symplectic

manifold,andR’~’= 0. (If da = 0, thenRV = 0 impliesp = 0 by thesamecompu-

tation as above). Let us assumethat theseconditions hold good, and that we
have (2.6) with 2a = do locally. Then a straightforward computation shows

that the connection

(2.18) V~YVxY~(XP’

is torsionless,it hasthe samecurvatureas V, i.e., ~ = R = 0, andV
1(e°w)= 0.

Thisis precisely the meaningof the fact that (M, w) is locally conformallysym-
plectic flat.
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Conversely, if (M, w) is locally conformally symplectic flat as above, we
havean open coveringM = U U, with the local functionsa, : U, -+ R suchthat
2a = doe, and with local torsionless flat linear connections7’ such that

V’(e°’w) = 0. Then, over U,fl U~. we have a,, —0, = const., hence, also,

~ ‘(c ~ w) = 0. Thisimpliessomerelation

(2.19) V,~Y=V~Y+A”(X, fl,

where w (A” (X, Y), Z) is completelysymmetric(e.g., [181). On the otherhand,
we get

(2.20) V,~w= 2a(X)w = V~w,

and, using (2.19), this implies A” = 0. Therefore,the local connections7’
glue up to a global connectionV on M. Then, the connectionV associatedto

V by (2.18) satisfies7w = 0, andit has torsion (2.5) andvanishingcurvature,
and providesan integrablestructure ~ on 5~(M,w).

Now, in the casen = 1, d w = 0, andM hastorsionlesssymplecticconnections.

Following [9], if (2.5) is satisfiedfor some7, this V maybe changedto a torsion-

less symplectic connectionwithout changing the complex structure ~ If this
is done,thetensor(2.12) hastheexpression[18]

(2.21) SV(U, Z, X, Y) = pV(u Z)w(X, Y),

where pV is the Ricci curvatureof V. Let us take in (2.11) p = —ps’. Then,
in covariantform, (2.11) is equivalentto

(2.22) pV(UZ)w(X Y) = pV(yZ)w(X LI) _pV(X,Z)w(y, LI),

andthis condition is always satisfiedasit canbe easily checkedon a symplectic

basise
1, e1~.

This completesthe proof of Theorem 2.1. The lastassertionof the theorem

is clear from this proof. •

Anotherinterestingresult for symplectictwistor spacesis

2.2. THEOREM. Let (M, w) be an almost symplecticmanifold. Then (.9~(M),
5a’ ~) (a = 1, 2) are simultaneously almost Kaehler manifolds, and this situa-
non occurs iff M is symplectic, and it has a connection V with vanishing curva-

ture and such that 7w = 0.

Proof The Kaehler condition consideredis dE” = 0 for Z” definedby (1.31),
and if we expressit on the various possiblehorizontal and vertical arguments
weseethatdZ~Z=0iff
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(2.23) dw = 0, df2 = 0,

where &2 is the secondterm of (1 .31), and it definesthe Kaehler form of ‘~.

This provesour first assertion,and the fact that M mustbe a symplecticmani-

fold.

Furthermore,we have

(2.24) d1,’~’,.~)= E ~ £1ET~).
Cyci.

and,in View of the definition of~2andof(l.36), d~2= 0 iff

(2.25) ~2([Th)(21,~W)]u,fU) = U

for every 21, ~ E ,?~°and ~UE ‘K. Since &TZ is nondegeneratealong ‘K, (2.25)
is equivalentto [T~)(21,~&I)]v=0, i.e., by (1.36),to

(2.26) RV(X, floJ=JoR~
1(X, Y)

for every fEY; X, YE TM. Finally, by meansof the tensorS of (2.12), our
conditionbecomes

(2.27) S(U, JZ, X, Y) + S(JU, Z, X, Y) = 0.

Now, since for every symplectictangentbasis(es,e
1~)thereexistsJE .9such

that Je~= e~0,and sinceS is symmetricwith respectto the first two arguments,
we seethat (2.27) implies

(2.28) S(e~,e1~,X, Y) = 0, S(e,, e1, X, Y) = S(e~~,e1~,X, Y).

The same relations hold with respect to a new symplectic basis (e1, te, + e1~)

with t ~ 0. This implies S = 0 necessarily,which ends the proof of Theorem
2.2.

Notice that we do not ask V to havezero torsion.
Let us also notice the following consequenceof Theorems1 .1 and 1 .2

2.3. COROLLARY. If the symplectic twistor bundle Y(M, w) of a symplectic
manifold (M, w) has no complex structure or no symplecticstructure then
(M, w) hasno flat symplecticconnection.

Anotherresult which we shouldlike to mentionhereis

2.4. PROPOSITION. Let (M, w) be an almost symplectic manifold. Then different

symplecticconnectionsyield different almost complexstructureson Y(M, w).
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Proof Following [3] the conditionfor two connectionsrelatedby

(2.29) V~Y=V~Y+K(X, fl

to definethesamestructure5~is

(2.30) J + K(JX, J Y) = 0.

For (2.30), if we apply the group representationanalysis of [9] we obtain (see
also [3])

(2.31) K(X, Y)=a(X)Y+~’3(Y)X

for some 1-forms a, ~3.Furthermore,since 7w =Vw = 0 we must have [18]

(2.32) w(K(X, Y), Z) = w(K(X, Z), Y).

For K of (2.31), and after some contractions,(2.32) implies a= = 0, i.e.,
K= 0.

In a similar way the conditionto havethe samestructure is

(2.33) J~K(J~X,Jfl=0

which is equivalentto

(2.34) .8(JX,JY,Z)4-B(JX,Y,JZ).—B(X,JY,JZ)+B(X, Y,Z) = 0,

whereB(X, Y, Z) = w(K(X, Y), Z), and it satisfies(2.32).Now, we shallconsider

the family of symplecticbases(e,, e,0 (t) = te1 + e~) (t *0) andJe1 = c1.,, (t), and
we shall explicitate (2.34) for this J, and for X = e1, Y= e1, Z = e~, then for
X = Je1,Y =Je1, Z = Jek. As a result we seethat we musthave

B(e1, e1, ek) = B(e~0,e1, ek) = B(e1, e10,eke)=

= B(e10,e10, ek~)= 0,
(2.35)

B(e1~,~ , ek) + B(e,~, e1, eke) = 0,

B(e1, e1, ek0) + B(e,,e1~,ek) = 0.

Furthermore,if we take the moreample family of symplecticbases(ei, OX~e~+

+ e~~)(X~= X~,0 * 0), we getsimilarly from (2.34),modulo(2.35), that

~ e~,ek~)+ X~~B(e1~,e1~,e,) = 0,
(2.36) X~X~B(e~,e, ek~)+ X~X~~B(e~,e1~,e,) = 0.

Here, in the first relation we takeI = k, andin the secondi = / = k. Then, since
one line of the symmetric matrix X can be takenarbitrarily, we shall obtain

(2.37) B(e~, e~, ek~) = B(e1~,eke,e~)= 0,
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which endsthe proofof Proposition2.4.
We shallend thissectionby a closerlook at the casen = 1. ThenM is a surface,

w is a volumeelement,and

(2.38) Y = {JE End T~MI~~2= —J~w-orientation= J-orientation}

(xEM), i.e., Y(M, w) =Y(M°’~)depends only of the orientation of M. The

fibre .9~is the upperhalf planeof a complexvariablez, i.e., a hemisphereof the

unit sphereS2.
From Theorem 1 .1, it follows that we can constructa complexstructureon

Yin the following way. We take a riemannianmetric g with volume from ~‘,

and usesemigeodesiclocal coordinates(u, v) suchthatg is

(2.39) ds2= du2+ G(u, v)du2 (G>0),

and therefore

(2.40) w = V”~duA du.

Then e = du, e’~= \/~dv is a symplectic cobasis,and e= a/au,e~= (l/V’~5
(a/au) is the dual symplecticbasis.Now we may usethe Levi-Civita connection

of M which is torsionlessandsymplectic,and it has the local equations

(2.41) Ve
1 = [(V’~~dv] e2, Vie2= — [(V’~~dv] e1,

where the index u denotesa/au. Accordingto thegeneralformulas(1.18),(1.29),
Y(M) hasa complexstructurewith the basisof(1, 0)-forms

(2.42) = du —z\/~dv, ~ = dz —(1 + z2)(~/~)~ du.

Correspondingly,we have on Y(M) the hermitian metric ~ of (1.30) with

the Kaehlerform (1.31),i.e.,

(2.43) = ~du A du — ~ {dx A dy + ~ du A

A[2xydx+(l +x
2—y2)dy]),

wherez = x +V~iy (y>0). Thisgives

(2.44) dE’ = —K[2xydx +(1 + x2—y2)dy]AZ’,

and we seethat we have a Kaehler structureon Y(M) iff K = 0, and we have
a locally conformalKaehlerstructure[14] iff K = const.
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3. POTENTIAL APPLICATIONS

The geometricapplicationsof symplectic twistor spacesare still to be disco-
vered and studied.Here, we makeonly a few introductory remarksabout this

subject.

a. A first ideais to usethemanifold Yof Section 1 in orderto derive properties
of differential formsof thealmostsymplecticmanifold (M, w). It is clearthat the

algebraof theseforms AM canbe seenas a subalgebraof thealgebraof cross-sec-
tions AE* which is built overa herrnitianvector bundle,and it has therefore

the well-known correspondingalgebraic operatorsand properties [19]. If we
agreeto call projectable to thoseelementsof AE* which belongto AM, and if
we discussthe projectability of the algebraic operatorsmentionedabove, we
shall refind the operatorsandpropertiesof AM asgiven in [81.

Namely,we havethe operator[19]

(3.1) Ca(X ,Xk)=a(%’,X,,..., ~‘,Xk) (aEAkE*).

For k= 1, #C (where# :E* ~E is defined by the metric of (1.11) is the

isomorphismE* £ defined by w [8]. If * is the Hodge star of wherethe
volume elementof E is taken to be (— lY’ w’

1/n!, then a simple computation
shows that *C preservesprojectability, and it is precisely the operator~ of [8].
TheoperatorsLa = w A a, and

(3.2) A=*’L* =~‘L

of [19] and [8] preserveprojectability.Becauseof thehermitianstructurewe have

(e.g., [19]) a unique decomposition

(3.3) a= ~ L’~ah, aEAkE*,
h~’(k—n)

where(k — ~)+ = max (0, k — n), andah= 4)k,h(L, A) aE kerA, where4)kh(L,A)

are polynomials in L, A which do not dependon a. Hence, if a is projectable

so area~,and (3.3) becomesa theorem[8] for AM, which needsno independent
proof.

Furthermore,we mayseeAE* as isomorphicto AJr*, i.e., the algebraof forms
on Y which are of type (~, 0) with respectto the (.~‘, ‘K)-decomposition(1.9)
of TY; we call this the ‘K-type of a form. It is well-known [13] that one has
a decompositionof the exteriordifferential on as

(3.4) d = d
10)+ d~1)+ a(~_,)
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wherethe indicesdenotethe ‘K -type of the operators.Thenwe have

(3.5) AM = (A.r*) fl (ker d”),

and dM = d’. The codifferential 6’ = — * d’ * on Y doesn’t preserveprojectabi-

lity, but 6’ = C6’C [8] does.As in [19], we have

(3.6) Ld’=d’L, A6’=ö’A,

in the symplectic case(i.e., dw = 0). Since C commuteswith A, we also get [8]

(3.7) A6’=~’A.

Then,by the proof in [19], we get [8]

(3.8) Ad’—d’A=—C’6’C=(—
1)deg6’

(3.8’) L6’—6’L=C~d’C=(— l)~~
1Cd’C.

Finally, we may considerthe (non-elliptic) LaplacianA’ = d’6’ + 6’d’ which

will commutewith *, d, L, such that for aE kerA’, 0h of (3.3) also belongto
kerA’. A’ doesn’t preserveprojectability, but ~‘ = — CA’ C= d’ 6’ + 6’ d’ does

[8]. A usual computationshows that d’, 6’ are formal adjoint operators,and
A’ is self-adjoint for the scalarproduct

(3.9) (a,6)= aA*~3AZ

(where a, j3 are compactlysupportedforms of ‘K-type (~,0) on Y, and is
thevolume form along ‘K), if the conditiond’ = 0 holdsgood.Etc.

Another possibility to relate forms on Y and on M is by fibre integration

alongthe fibers of ir : Y-÷M.It is known [5] that, ifMis compact,then

(3.10)

(where A~)Ndenotescompactly supportedforms of ‘K -type (p, A’), and N =

= n(n + 1)) is a surjection.Generally,on A~~Nwe have d = d’ + a, hencewe do

not get a cochain subcomplexof the de Rham complex of Y, but, using the

‘K-type homogeneousconsequencesof d2 = 0 [13], it is easyto seethat such
a subcomplex~ definedby the subspaces

(3.11)

Accordingly, and since integration along fibers commutes with d, we deduce

theexistenceof a homomorphism

(3.12)
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If M is a symplecticflat manifold, .J~°is integrable,a = 0 and = A~NY.It
isalso known [5] that

(3.13) ~N(a,f~)= ~

where aE APM, ~3E A~” ,9~ir is the projection Y-~M, and ~ is the global
scalarproduct which leadsto Poincaréduality. It follows from (3.13) that, at

the cohomologylevel, if irs’ is injective, the f is surjective.In our casethis is true
sincethe bundle Y hasglobalcross-sections.Thisyields

3.1. PROPOSITION.Let M be a compactsymplecticflat manifold. Then, there
existsa cohomologyepimorphism

(3.14)

Finally, it should also be remarkedthat, in caseY hasa complexstructure,

we might also usethe decompositionof forms of M into termsof homogeneous
complex type of fT. The terms will not be projectable,but the decomposition
may be interestingat least sinceM itself may haveno complexstructure.(See

[4] for examplesof symplecticflat manifoldswith no complexstructure).

b. A secondpotentialapplication to be consideredis to the computationof the

Chern classesof an almost symplecticmanifold (see,e.g., [16]). Indeed,wemay
use connectionD of (1.32) in orderto computethe Chernclassesof (E, ~‘2~’and

thenpull backtheseclassesfrom 9to M by meansof a global crossectionJ : M —~

-~Y.
Namely, let V be definedlocally by (1.26),andlet

8 K\ d0+0A0+~AX d~+0AK+KAp
(3.15) A _~®) dA+pAX+XAO dp+pAp+XA~

be the correspondingcurvatureforms. Then,connectionD has the local complex
equationsgiven by the secondpart of formula(1.33), and its curvaturewill be

(3.16) = AZ—’®— Y’(8Z +K +Zt8_ZAZ~—

2

— Y’~Y’)A~—

— (dY1 — Y’O + Y’ZX + XZY’ + pY’) A ~.
2
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Now, the evaluation of the Chempolynomials on 4)1~yields representative

forms of the Chern classesrequested.For instance,if V is a flat connection,

and (e, e~)are parallelbases,(3.16) yields

(3.17)

and we seethat c,(E) is representedby (l/4ir) x (Kaehlerform ofg~of(l.24)).

c. Finally, we shall discussmappings~ : N -+ M, where N is a Kaehlermanifold

with complex structurej and metric a, and M is a symplectic manifold with
symplectic form w, which are analogousto the harmonic mappingsof rieman-
niangeometry.

Firstly, a mapping p N -+ M will be called 5~-holomorphiable(a = 1, 2)

if it can be written as p = ~ro ~(i for some holomorphic mapping ~l’ (N, /) -+

-÷ (Y(M, w), 5) where ,f~,is associatedby (1.10) to some symplectictorsion-
less connectionV on M. The characterizationof this property is obtainableas
in [10], [11]. Namely,wemusthave

(3.18) ~i’~ = ° ~ (‘Pm = d~t’).

This relation has a horizontal component, which we obtain by applying the

differential ir,~,andby using(1 .15)for bothJ and!.The resultis

(3.19) J~p~(j~u)= 0 (J= /1(pr~u)),

where + is for a = 1, and — is for a = 2. The expressionof the vertical component

of (3.18)follows by usingtherelation

(3.20) (,L,*(u))1~= (~‘V)J (u ETA’),

which is provided to us by (1.34), and where p’V is the pullbackof V to the
vector bundle ~‘(TM) = 11’(E). The two sides of (3.20) are endomorphisms

of this latter bundle. Using again (1.15),and taking u to be successivelyof the
complex type (1, 0) and (0, 1), the vertical componentof (3.18) mentioned

abovebecomes(aftera complexconjugation)

(3.21) J-[(~-~’V)~~(J~flI = 0,

wheref= ~(prNu), and Yisa cross-sectionof~’(TM).
Furthermore, we may see p,1. as a cross-sectionof T*N n ~ ‘(TM) with the

local componentsp,~= ax”/ar~,where p has the local equationsx~’= xX(rP),

and ~p,1,has a covariant derivativeVp~~V’~ ® ~ where7~is the Levi-
-Civita connectionof the Kaehlermetric aof N. Thenwe may definethepseudo-

tensionfield [15]
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(3.22) t~’(p)= ~

(Notice that we have [15]

(3.23) V~~p,~’=—i_

where F:., I’:. are the connection coefficients of V,
7a respectively, and the

symmetry of r:. implies V,,~ = Vq~P’)~The mapping ~ is said to be pseudohar-
monic if t(p) = 0. The interest of this notion (if any) relies on the fact that

t(lp) = 0 is an elliptic systemof equations.Hopefully, a good understandingof
such pseudoharmonicmappingscould yield progressin symplecticgeometry,in
the way Gromov’s pseudoholomorphiccurves [6] did. Particularly,if M is a 2-di-
mensionalmanifold with w definedby (2.39),(2.40), and if V is the Levi-Civita
connectionof the metric (2.39), thenpseudoharmonicmeansin fact harmonic.

Now, the relationsbetweenthe twistor spacesand pseudoharmonicmappings

is exactlythe sameas in riemanniangeometry,namely[10], [11]:

3.2. PROPOSiTION. Let ~p: N -+ M be a mapping from the Kaehler manifold
(N, j, a) to thesymplecticmanifold (M, w) endowedwith the’torsionlesssymplec-

tic connectionV. Then, if either i) p is 52-holomorphiableor, ii) ~ is horizon-

tally 51-holomorphiable(i.e., = ir o ~//where ~‘ : N —~ Y is 51-holomorphic
and with (im ~,*)v = 0), ~pis a pseudoharmonic mapping.

The proof is like for Theorems 5.6 and 5.7 of [.10]:oneusescomplexanalytic
coordinates o~,~uon N (insteadof r”), which, by (3.23) yields

(3.24) ~lP~=[(lP-’V)~1(~P* (_.~_))]~‘_[~4~”a]A

=[~~-‘V a ~*(_—)]
aa

(we used that V”~ ~ = 0 in Kaehler geometrY) ; then

(3.25) ~

and the manipulation of (3.19) and (3.21) leads from the hypotheses to the

conclusion. •

Remark. In fact, Proposition 3.2 holds for any evendimensional manifold M
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endowedwith a torsionlessconnectionV.
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